Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.

Identifieur interne : 002B07 ( Main/Exploration ); précédent : 002B06; suivant : 002B08

Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.

Auteurs : Hajime Tomimatsu [Japon] ; Yanhong Tang

Source :

RBID : pubmed:22302511

Descripteurs français

English descriptors

Abstract

To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.

DOI: 10.1007/s00442-012-2256-5
PubMed: 22302511


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.</title>
<author>
<name sortKey="Tomimatsu, Hajime" sort="Tomimatsu, Hajime" uniqKey="Tomimatsu H" first="Hajime" last="Tomimatsu">Hajime Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Japan. tomimatsu.hajime@nies.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506</wicri:regionArea>
<wicri:noRegion>Tsukuba 305-8506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Yanhong" sort="Tang, Yanhong" uniqKey="Tang Y" first="Yanhong" last="Tang">Yanhong Tang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22302511</idno>
<idno type="pmid">22302511</idno>
<idno type="doi">10.1007/s00442-012-2256-5</idno>
<idno type="wicri:Area/Main/Corpus">002B46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B46</idno>
<idno type="wicri:Area/Main/Curation">002B46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B46</idno>
<idno type="wicri:Area/Main/Exploration">002B46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.</title>
<author>
<name sortKey="Tomimatsu, Hajime" sort="Tomimatsu, Hajime" uniqKey="Tomimatsu H" first="Hajime" last="Tomimatsu">Hajime Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Japan. tomimatsu.hajime@nies.go.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506</wicri:regionArea>
<wicri:noRegion>Tsukuba 305-8506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Yanhong" sort="Tang, Yanhong" uniqKey="Tang Y" first="Yanhong" last="Tang">Yanhong Tang</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Light (MeSH)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stomata (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Carbone (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Lumière (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stomates de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Photosynthèse</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Species Specificity</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Lumière</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22302511</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>169</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.</ArticleTitle>
<Pagination>
<MedlinePgn>869-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-012-2256-5</ELocationID>
<Abstract>
<AbstractText>To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tomimatsu</LastName>
<ForeName>Hajime</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Japan. tomimatsu.hajime@nies.go.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Yanhong</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22302511</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-012-2256-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2000 Aug;20(14):969-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Jun;94(3):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(411):469-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Aug;111(4):505-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Jul;69(4):517-523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Mar;30(3):258-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Aug;28(8):1189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18519250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Mar;122(4):479-486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Mar;110(1):120-131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):351-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):487-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Mar;122(4):470-478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Aug;105(4):1115-1123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Nov;79(3):896-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Feb;122(2):163-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1052-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):782-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Tang, Yanhong" sort="Tang, Yanhong" uniqKey="Tang Y" first="Yanhong" last="Tang">Yanhong Tang</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Tomimatsu, Hajime" sort="Tomimatsu, Hajime" uniqKey="Tomimatsu H" first="Hajime" last="Tomimatsu">Hajime Tomimatsu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22302511
   |texte=   Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22302511" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020